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Abstract
The Fisher dissemination exchange properties, as well as reaction from characteristics, make the non-linear model. The

nonlinear fractional Fisher model shows up in practical physical circumstances like ultra-slow kinetics, Brownian movement
of particles, anomalous diffusion, polymerases of Ribonucleic acid, deoxyribonucleic acid, continuous irregular activity, and
arrangement of wave kinds. The paper considered the strategy based on the Chebyshev polynomials to get the numerical
method to solve the nonlinear generalized fractional Fisher equation. The numerical scheme is developed in the following
manners: at first, the semi-discrete is constructed in the temporal sense based on a linear interpolation with accuracy order
δ2t, and secondly, the full discrete of the model is investigated. Moreover, the unconditional stability and convergence order
are investigated via the numerical results. For getting of the full-discrete scheme, the spatial derivative is approched based on
the shifted Chebyshev basis. In addition, the adequacy and legitimacy of the proposed modern are illustrated by means of two
test.
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1. Introduction

In recent papers, the fractional model was proposed for modeling the research of many researchers such
as mathematics, physics, and engineering, they have ideally studied fractional calculus because of its wide
applications [1, 2, 3]. The most common definitions used in the fractional partial equation are Caputo
derivatives that defined as

0D
υ
xu(x, t) = 1

Γ(Θ− υ)

∫x
a

(x− ζ)Θ−υ−1∂
Θu(x, t)
∂ζΘ

dζ.

where 0Dα
xu(x, t) denotes the left Caputo fractional derivative of u(x, t) of the order Θ− 1 < α ⩽ Θ, Θ ∈ N.

Nonlinear fractional partial differential equations have attained substantial importance. This paper is to
examine and estimate a solution for the general form of the nonlinear generalized fractional Fisher equation
(NGFFE) using the Caputo fractional differential analysis as
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∂u(x, t)
∂t

= 0D
α
xu(x, t) + u(1− u)(u− ζ) + f(x, t), 0 ⩽ x ⩽ L, 0 ⩽ t ⩽ T , (1.1)

where 0 < ζ < 1. The constant function f(x, t) has been added to the model so that the accuracy of the
numerical method can be conveyed to the reader in a clearer way. The initial condition is

u(x, 0) = q(x), 0 ⩽ x ⩽ L, (1.2)

and boundary conditions are the following.

u(0, t) = g0(t), u(L, t) = g1(t), 0 ⩽ t ⩽ T , (1.3)

0Dα
xu(x, t) denotes the left Caputo fractional derivative of u(x, t) of the order Θ− 1 < α ⩽ Θ, Θ ∈ N.

Some of the applications of this equation are control theory, Nano-electrodynamics, Neurophysiology, and
autocatalytic chemical reaction [4, 5].
To solve NGFFE, numerical approaches must be used in order to gain an approximate solution. Because the
analytical solution to solve this type of problem is difficult and in many cases, the answer can be reached
with limited conditions, otherwise, it is impossible. During the past few years, many authors presented some
numerical methods, for example, Fisher’s nonlinear diffusion formulas with general solutions for fractional
sector [6], Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional
derivative [7], utilizing the fractional sub-equation approach with analytical solutions to the fractional Fisher
equation [8], on the time fractional generalized Fisher equation [9], a numerical investigation that solves a
fractional Fisher problem by using Chebyshev transformation algorithm [10].
However, these schemes require more or less some restrictions on the mesh ratio, i.e., they are conditionally
stable. But in this article, we will present an unconditionally stable numerical method. The goals of this
paper are as follows. In part 2, we define the explanation of the temporal and spatial discretization, shifted
Chebyshev polynomials, and some advantages. In the next part of the paper, the numerical method is
explained to approximate the nonlinear problem (1.1). The numerical results, error estimates, tables, and
different figures are demonstrated in Section 3.

2. Transposed Chebyshev polynomials of the first type

This paper segment shows how to use the finite difference method in the temporal sense. Then we use
the shifted Chebyshev base in the collocation technique to discrete the space variable for Eq. (1.1). Primary
subsections of the Chebyshev polynomials of the first type (CPFT) will be introduced in particularity as
follow.
Firstly, CPFT is created based on the Jacobi polynomials P

(η,θ)
k (x) as below

Tk(x) =
22k(2k
k

)P(− 1
2 ,− 1

2 )
k (x).

The closed form of TⓈ
k (x) in the distance x ∈ [0, 1] can be obtained as

T
Ⓢ
k (x) =

k∑
ℓ=0

Ak,ℓ × xk−ℓ, k = 1, 2, ...,M+ 1, (2.1)

where
Ak,ℓ =

(−1)ℓ × 22k−2ℓkΓ(2k− ℓ)

Γ(ℓ+ 1)× Γ(2k− 2ℓ+ 1) ,
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and T
Ⓢ
k (x) is the shifted Chebyshev polynomials of the first type (SCPFT). Accordingly we derive that

T
Ⓢ
k (x) are orthogonal polynomials on [0, 1] with the inner product that is

⟨TⓈ
k (x),TⓈ

n (x)⟩ =
∫1

0

1√
x− x2

T
Ⓢ
k (x) TⓈ

n (x) dx =


π
2 , k = n = 0,
π, k = n,
0, k ̸= n.

.

Now we may approximate the u(x, t) on (x, t) ∈ [0, 1]× [0, T ] by T
Ⓢ
k (x), k = 0, 1, . . . ,M as

u(x, t) ≈ u∗(x, t) =
M∑
k=0

ρk(t) T
Ⓢ
k (x) = Υ TⓈT , (2.2)

in which
ρk =

1
π

∫1

0

1√
x− x2

u∗(x, t) TⓈ
k (x) dx.

In Eq. (2.2), Υ and TⓈ are the vector in (M+ 1)-dimensions that specified as

TⓈ =

[
T
Ⓢ
0 (x),TⓈ

1 (x), . . . ,TⓈ
M+1(x)

]
, Υ = [ρ0, ρ1, . . . , ρM+1],

In arrange to realize the numerical strategy, we need the Caputo fractional derivative T
Ⓢ
k (x) in Eq. (2.1)

that determine as

0D
α
x (T

Ⓢ
k (x)) =

k−⌈α⌉∑
ℓ=0

L
α,⌈α⌉
k,ℓ xk−ℓ−α, x ∈ [0, 1], k = 1, 2, . . . ,

where
L
α,⌈α⌉
k,ℓ =

(−1)ℓ4k−ℓkΓ(2k− ℓ)Γ(k− ℓ+ 1)
Γ(ℓ+ 1)Γ(2k− 2ℓ+ 1)Γ(k+ 1− ℓ− ⌈α⌉)

.

Consider that for k < ⌈α⌉ we have 0Dα
x (T

Ⓢ
k (x)) = 0. Then the α-order of the Caputo derivative of the

function u(x, t) ∈ C([0, 1]× [0, T ]) can be obtained by the next formula.

0D
α
x (u

∗(x, t)) =
M∑
k=0

ρk(t)0D
α
x (T

Ⓢ
k (x)) =

M∑
k=0

k−⌈α⌉∑
ℓ=0

ρk(t) L
α,⌈α⌉
k,ℓ xk−ℓ−α = Υ αT

ⓈT , (2.3)

where αT
Ⓢ =

[
αT

Ⓢ
0 (x), αTⓈ

1 (x), . . . , αTⓈ
M+1(x)

]
is a vector in (M+ 1)-dimensions that determine as

αT
Ⓢ
k (x) =

k−⌈α⌉∑
ℓ=0

L
α,⌈α⌉
k,ℓ xk−ℓ−α, k = 1, 2, . . . ,M.

2.1. Manner of the numerical scheme
This segment is committed to combining the spectral strategy based on SCPFT with the finite difference

to generate the numerical scheme of Eq. (1.1). Imprimis, the integer-order temporal derivative of Eq. (1.1)
is discretized using the following structure as

∂u(x, t)
∂t

=
u(x, tz+1) − u(x, tz)

δt
−

δt

2
∂2u(x, t)

∂2t
+O(δ2t), z = 1, 2, . . . ,Nt, (2.4)
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in which Nt is the measure of step of the temporal variable t and δt = T
Nt

. To get the temporal-discrete
method with the second order, replace (2.4) in Eq. (1.1) and regiment it, one obtain as

uz+1 −
1
2δt 0D

α
xu

z+1 −
δt

2 N(uz+1) = uz +
1
2δt 0D

α
xu

z +
δt

2 N(uz) +
1
2(f

z+1 + fz) + δt Rz+1, (2.5)

where N(uz) = uz(1 − uz)(uz − ζ). In the past relation, uz and fz are explaining u(x, tz) and f(x, tz),
respectively. As well as, Rz+1 = O(δ2t) is the truncation error. The temporal scheme is got by deleting the
truncation error as

Uz+1 −
1
2δt 0D

α
xU

z+1 −
δt

2 N(Uz+1) −Uz −
1
2δt 0D

α
xU

z −
δt

2 N(Uz) −
1
2(f

z+1 + fz) = 0, (2.6)

where Vz is the approximate solution. At present, permit us to create the spatial discretization, replacing
(2.2) and (2.3) in (2.6), we get

Υz+1
[
CⓈT

−
1
2 δt αC

ⓈT

]
−

δt

2 N(Υz+1 CⓈT

) −Υz

[
CⓈT

+
1
2δt αC

ⓈT

]
−

δt

2 N(Υz CⓈT

) −
1
2(f

z+1 + fz) = 0.

(2.7)
As a result, we dispose Eq. (2.7) by using M+ 1 points {xr}

r=M
r=0 on x ∈ (0, 1) that the roots of SCPFT are

as these points then we get a method of nonlinear system of M− 1 equations and M+ 1 unknowns. To get
the other two equations, we apply the boundary conditions that are gained by substituting Eq. (2.2) in Eq.
(1.3) as {

gz0 =
∑M

k=0 ρ
z
k T

Ⓢ
k (0),

gz1 =
∑M

k=0 ρ
z
k T

Ⓢ
k (1),

z = 0, 1, . . . ,Nt, (2.8)

where gz0 and gz1 are shortened g0(tz) and g1(tz).
The nonlinear system (2.7)-(2.8) can be present with a form as

H(ρzk) = 0, z = 0, 1, . . . ,Nt, (2.9)

One can construct the nonlinear system (2.9) by using the Newton iteration approach in the below formu-
lation.

ρ̆k(tz+1) = ρ̆k(tz) − J−1(ρ̆k(tz)) H(ρ̆k(tz)),
where J−1(ρ̆k(tz)) is the inverse of the Jacobian matrix. For j = 0, we use the initial condition as

u(x, 0) ≈
M∑
k=0

ρk(0) TⓈ
k (x) = q(x),

where ρk(0) = 1
π

∫1
0

1√
x−x2 q(x) TⓈ

k (x) dx. As a result, we can obtain unknowns ρk(t).

3. Test cases to approve the numerical method

In this segment, the numerical consideration of distinctive test cases to look at the adequacy and validity is
reported by considering the proposed strategy in terms of errors L∞ and L2-error as

L2 =

(
1
M

M∑
r=0

| u∗(xr, T) − u(xr, T) |2
) 1

2
,

L∞ = max| u∗(xr, T) − u(xr, T) |, 0 ⩽ r ⩽ M.

The numerical come about of the procedure upon a few test issues for different values of Nt and M are
utilized to assess the accuracy and consistency of the utilized scheme. Notice that to estimate the temporal
convergence order Corder, we use the following rule.

Corder = log2

(
error(Nt,M)

error(2Nt,M)

)
.
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Problem 3.1. Consider the test example as

∂u(x, t)
∂t

= 0D
α
xu(x, t) + u(x, t)(1− u(x, t))(u(x, t) − ζ) + f(x, t), 0 ⩽ x ⩽ 1, 0 ⩽ t ⩽ T ,

in which
f(x, t) = −e−t

(
x2 +

2x2−α

Γ(3−α)

)
− e−t

(
x2(1− x2)(x2 − ζ)

)
.

The analytical solution is u(x, t) = x2exp(−t). The set of numerical results of this example is presented in
tables and figures as follows. Table 1 shows the order with α = 0.5 at T = 1, and M = 6 and different values
of Nt. As to be shown, the produced order is in total agreement with the hypothetical order in this table.
In Table 2, L∞ and L2 are compared for M = 7, 8, 9 with value Nt = 100 at T = 1 and α = 0.6. In Figure 1,
the absolute error for eight collocation points and the various values M at T = 1 and α = 0.8 is presented.
These results indicate the proposed method is also very efficient from the computational standpoint.

Table 1: The result with α = 0.5, M = 6 and different values of Nt at T = 1 for Example 3.1.
Nt α = 0.5

L∞ Corder L2 Corder

15 3.67930 × 10−2 − 7.20027× 10−2

30 5.48141 × 10−3 2.74681 1.06776 × 10−2 2.75346
60 1.21866 × 10−3 2.16925 2.37020 × 10−3 2.17151
120 2.96054 × 10−4 2.04136 5.75566 × 10−4 2.04196
240 7.34869 × 10−5 2.01030 1.42853 × 10−4 2.01045

Table 2: The comparison of L∞ and L2 for M = 7, 8, 9 and Nt = 100 at T = 1 for Example 3.1.
M α = 0.6

L∞ L2
7 3.21860 × 10−4 4.26890× 10−4

8 2.4860 × 10−4 5.78203× 10−4

9 9.25482 × 10−5 4.86102× 10−4

Problem 3.2. Consider the test example as below

∂u(x, t)
∂t

= 0D
α
xu(x, t) + u(x, t)(1− u(x, t))(u(x, t) − ζ) + f(x, t),

0 ⩽ x ⩽ 1, 0 ⩽ t ⩽ 1, 0 < α ⩽ 2.

where
f(x, t) = −exp(−t)

(
x2(1− x) +

Γ(3)
Γ(3−α)

x2−α −
Γ(4)

Γ(4−α)
x3−α

+ x2(1− x)(1− x2(1− x))(x2(1− x) − ζ)

)
.

The initial and boundary conditions are as below, respectively.

u(x, 0) = x2(1− x), u(0, t) = u(1, t) = 0.

The analytic solution of this example is u(x, t) = x2(1− x)exp(−t).
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Figure 1: The error L∞ with α = 0.8 at T = 1,M = 6 for Example 3.1.

The set of numerical results of this example is presented in tables and figures as follows. Table 3 shows the
order with α = 1.5 at T = 1, and M = 5 and different values of Nt. As to be shown, the produced order
is in total agreement with the hypothetical order in this table. In Table 4, L∞ and L2 are compared for
M = 4, 5, 6 with value Nt = 300 at T = 1 and α = 1.7. In Figure 2, the absolute error for eight collocation
points and the various values M at T = 1 and α = 0.5 is presented. These results indicate the proposed
method is also very efficient from the computational standpoint.

Table 3: The result with α = 1.5, M = 5 and different values of Nt at T = 1 for Example 3.2.
Nt α = 1.5

L∞ Corder L2 Corder

15 3.08007 × 10−3 − 6.74625× 10−3

30 7.70318 × 10−4 1.99944 1.68724 × 10−3 1.99942
60 1.92599 × 10−4 1.99986 4.21854 × 10−4 1.99985
120 4.8151 × 10−5 1.99996 1.05466 × 10−4 1.99996
240 1.20378 × 10−5 1.99999 2.63667 × 10−5 1.99999

Table 4: The comparison of L∞ and L2 for M = 4, 5, 6 and Nt = 300 at T = 1 for Example 3.2.
M α = 1.2

L∞ L2
4 4.72802 × 10−3 8.35482× 10−2

5 4.70150 × 10−3 8.00189× 10−2

6 3.48902 × 10−3 3.07821× 10−2

4. Conclusion

After all, the paper persuades the readers that this is the simplest method to solve the nonlinear gen-
eralized fractional Fisher equation with the numerical scheme. The last step in the reasoning scheme of
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Figure 2: The error L∞ with α = 1.7 at T = 1,M = 8 for Example 3.2.

the paper is its convergence and stability. This strategy is based on the finite difference to generate the
semi-discrete and the collocation method on the basis of the Chebyshev polynomials to get the full discrete.
The current method is very accurate and its efficiency is simpler and more acceptable than other methods.
This method can be used for many other non-linear equations that have a fractional derivative with respect
to time and space variables.
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